

HVV1012-060

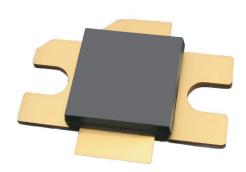
60 Watts, 50V, 1025-1500MHz, 10μs, 1% Duty Cycle

DESCRIPTION

The high power HVV1012-060 device is a high voltage silicon enhancement mode RF transistor designed for L-Band pulsed avionics applications operating over the frequency range from 1025MHz to 1150MHz.

FEATURES

High Power Gain Excellent Ruggedness 48V Supply Voltage


ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter Value		Unit
V_{DSS}	Drain-Source Voltage	95	V
V_{GS}	Gate-Source Voltage	10	V
I_{DSX}	Drain Current	4	Α
P_D^2	Power Dissipation	625	W
T _S	Storage Temperature	-65 to	°C
		+200	
T _J	Junction	200	°C
	Temperature		

THERMAL CHARACTERISTICS

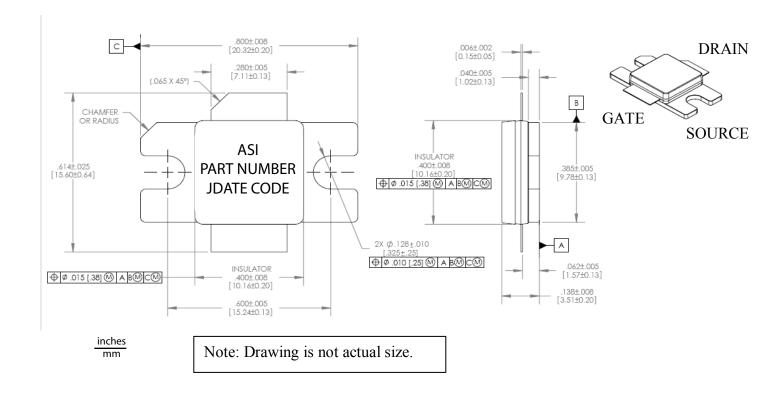
Symbol	Parameter	Max	Unit
θ_{JC}^{1}	Thermal Resistance	0.28	°C/W

PACKAGE

The device resides in a two-lead metal flanged package with liquid crystal polymer lid. The HV400 package style is qualified for gross leak test – MIL-STD-883, Method 1014.

RUGGEDNESS

The HVV1012-060 device is capable of withstanding an output load mismatch corresponding to a 20:1 VSWR at rated output power and operating voltage across thefrequency band of operation.


Symb	ol Parameter	Test Condition	Max	Units
LMT ¹	Load	$P_{OUT} = 60W$	20:1	VSWR
	Mismatch Tolerance	F = 1150MHz		

ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	Тур	Units
$V_{BR(DSS)}$	Drain-Source Breakdown	VGS=0V,ID=2mA	102	V
I _{DSS}	Drain Leakage Current	VGS=0V,VDS=48V	<50	μA
I_{GSS}	Gate Leakage Current	VGS=5V,VDS=0V	<1	μA
G_P^1	Power Gain	P _{OUT} =60W,F=1025,1150MHz	23	dB
IRL^1	Input Return Loss	P _{OUT} =60W,F=1025,1150MHz	9	dB
η_{D}^{-1}	Drain Efficiency	P _{OUT} =60W,F=1025,1150MHz	52	%
PD^1	Pulse Droop	P _{OUT} =60W,F=1025,1150MHz	<0.3	dB

 1 Under Pulse Conditions: Pulse Width = 10μ sec, Pulse Duty Cycle = 1% at VDD = 48V, IDQ = 25mA 2 Rated at $T_{CASE} = 25^{\circ}$

REV. A

ASI Semiconductor, Inc. (ASI) reserves the right to make changes to information published in this document at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Information in this document is believed to be accurate and reliable. However, ASI does not give any representations or warranties, either express or implied, as to the accuracy or completeness of such information and shall have no liability no liability for consequences resulting from the use of such information. No license, either expressed or implied, is conveyed under any ASI intellectual property rights, including any patent rights.